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We study critical properties of the relaxation time at a threshold point in switching processes between
bistable states under change in external fields. In particular, we investigate the relaxation processes near the
spinodal point of the infinitely long-range interaction model (the Husimi-Temperley model) by analyzing the
scaling properties of the corresponding Fokker-Planck equation. We also confirm the obtained scaling relations
by direct numerical solution of the original master equation, and by kinetic Monte Carlo simulation of the
stochastic decay process. In particular, we study the asymptotic forms of the divergence of the relaxation time
near the spinodal point and re-examine its scaling properties. We further extend the analysis to transient critical
phenomena such as a threshold behavior with diverging switching time under a general external driving
perturbation. This models photoexcitation processes in spin-crossover materials. In the ongoing development
of nanosize fabrication, such size-dependence of switching processes should be an important issue, and the

properties obtained here will be applicable to a wide range of physical processes.
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I. INTRODUCTION

Relaxation phenomena in strongly interacting systems
have been studied extensively, including various types of
threshold phenomena. One of the most typical examples is
the decomposition at the coercive field (the end of the hys-
teresis loop of a ferromagnetic system). This phenomenon
appears in the field dependence of the order parameter in the
ordered phase. In mean-field studies, this phenomenon is
well described by the change in the free energy as a function
of the magnetization (the order parameter of a ferromagnetic
system). That is, in the ordered state, the free energy has two
minima representing the symmetry-broken states. When we
apply an external field, one of them is selected to be the
equilibrium state. For a weak field, however, the other state
remains as a metastable state. When the field becomes
strong, the metastable state finally becomes unstable. This
point is called the spinodal point. However, in models with
short-range interactions, fluctuations cause the system to es-
cape from the metastable state through nucleation phenom-
ena, and thus the change in the relaxation time is smeared.
Thus, although there are several studies on the divergence of
the relaxation near the spinodal points [1], the spinodal phe-
nomenon in short-range systems must be defined only as a
crossover [2].

Recently, however, it has been pointed out that the mean-
field universality class is realized in spin-crossover type
systems [3]. In these materials, the volume of the unit
cell changes, depending on the local twofold states [say,
the high-spin (HS) and low-spin (LS) states]. The volume
change causes a lattice distortion, and the elastic interac-
tions among the local distortions cause an effective long-
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range interaction among the spin states. The critical proper-
ties of the spin-crossover system turned out to belong to the
mean-field universality class. It was also found that the
finite-size analysis for various quantities is very similar to
the long-range, weakly interacting model (the Husimi-
Temperley model).

In spin-crossover systems, one may expect that the dy-
namics also corresponds to that of the mean-field model. In
particular, various threshold phenomena have been pointed
out in the dynamics of spin-crossover type materials. For
example, a spinodal phenomenon without nucleation type
clustering was reported in numerical calculations [3]. The
change is considered not to be a crossover process but a
change with a true critical singularity that can be described
by mean-field dynamics [4]. Moreover, threshold phenomena
have been pointed out in the dependence of the photoexcita-
tion process on the strength of the photoirradiation, which
can be modeled as a kind of spinodal phenomenon [5]. The
metastable state does not relax to the stable state in the
mean-field approximation, which corresponds to the infinite
system size in the Husimi-Temperley model.

In recent extensive studies on nanosize systems, finite-
size effects turn out to play important roles. Therefore, it
would be useful to study finite-size effects on the spinodal
phenomenon as a critical dynamical process. The critical
phenomena of the phase transition were studied in a dynami-
cal mean-field model. The relaxation time diverges when the
parameter approaches the threshold value. Binder studied the
divergence of the relaxation time in spinodal phenomena in
the mean-field model by a Monte Carlo method [1]. Al-
though the metastable state does not relax to the stable state
in the mean-field approximation, Paul et al. studied the
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relaxation from the metastable side in finite-size systems and
obtained a finite-size scaling form of the relaxation time [6].
The size dependence of the relaxation was also discussed
recently [7].

In the present paper, we study the asymptotic behavior of
the relaxation time of the infinitely long-range interaction
model (the Husimi-Temperley model) near the spinodal point
including the metastable region, the spinodal point, and the
unstable region. We re-examine the scaling properties near
the spinodal point, which have been proposed by Paul ez al.
[6].

As in the previous studies, we adopt the Glauber dynam-
ics, and derive a master equation for the probability distribu-
tion of the total magnetization. We first derive a master equa-
tion as a function of the total magnetization, which is
possible in the Husimi-Temperley model because of the
long-range nature of the interactions. Then, we derive a
Fokker-Planck equation by using an expansion in terms of
the inverse system size, which is an example of the van
Kampen Omega expansion [8,9]. We analyze the Fokker-
Planck equation and derive a scaling relation and also
asymptotic forms of the relaxation times. These properties
are confirmed by direct numerical investigations of the origi-
nal master equation, as well as corresponding Monte Carlo
simulations of the stochastic decay process.

We also extend the analysis to general threshold phenom-
ena, such as switching from LS to HS states in spin-
crossover materials by photoirradiation. We obtain the effects
of the photoirradiation on the master equation, and show that
the critical properties of these processes are the same as
those of the spinodal phenomena.

The rest of this paper is organized as follows. In Sec. II,
we review the spinodal phenomena and define the master
equation for the long-range model. Then, we study the
asymptotic size dependence of the relaxation time near the
spinodal point in Sec. III Numerical confirmation of the
asymptotic forms is given in Sec. IV Next, we extend our
study to threshold phenomena under external pumping in
Sec. V Finally, a summary and discussion are given in Sec.
VL

II. INFINITE LONG-RANGE MODEL
AND THE SPINODAL POINT

We investigate the relaxation phenomena near the spin-
odal point in the infinitely long-range model. This is a spin
model in which each spin interacts equally with every other
spin. The Hamiltonian is

7 N

H=-——M*-HM, M= o, 1

" 20 (1)
where H is the magnetic field and o;= * 1. It is well-known
that the mean-field theory is exact for this model in the limit
of N— . This model shows a second-order phase transition
at T=Tc=J, H=0. Below the critical temperature, a meta-
stable state exists for weak magnetic fields. When the mag-
netic field becomes strong, the metastable state becomes un-
stable at a certain point, known as the spinodal point. In
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order to determine the spinodal point, we consider the ex-
tended free energy, i.e., the free energy for fixed total mag-
netization. In the infinitely long-range model, this is given by

J
flm) =- oM _Hm_ﬁ_]VlnN Cvemyn
J 1{1+m 1+m 1-m 1-m
~——m-"—Hm+ — In + In ,
2 B\ 2 2 2 2

2)
in the limit N— o where we use Stirling’s formula and m is
the magnetization per spin (m=M/N). The spinodal point is
given by the following conditions:

g s
—f = and _j; =0,
om om
which give
1
I ! 1++/1- ,E]
Hep= *J\/1-— = —In——F—=, (3)
BI 2B 1
I—/1-—
BJ
at which the magnetization is given by
- + 1 L (4)
mgp= T BJ .

In this paper, we consider the case where we increase the
field from a negative value. Therefore, we consider the be-
havior of a locally stable state at negative magnetization
around mgp<0.

We study the dynamics via the standard master equation

dP(S,1)

P > W g P(S)+ 2 W _sP(S"),  (5)

s’ s’

where S and S’ denote states of the system and Wg_ ¢ is a
transition rate from S to S’. The probability of the state S at
time ¢ is denoted by P(S,1).

Among the many possible dynamical models (choices of
the transition rate), we adopt the Glauber dynamics in this
work. In the Glauber dynamics, the transition takes place as
a flip of a local spin, and the transition rate w;; from a local
spin state i to a local spin state j is given by

1 e PEi
Wi = 1o e PEi 4 e PE)’ ©
where E; denotes the energy of the system in spin state 7, and
7, is some characteristic time scale. In this paper, we scale
the time by 7, and set 7y=1 for simplicity.

With this transition rate, we construct a master equation
for the mean-field model. As the Hamiltonian depends only
on the magnetization M, the master equation is written in
closed form for M. Thus, the master Eq. (5) can be expressed
as a function of M. Let P(M) be the probability that the
system has the total magnetization M. The master equation
for P(M) is given by
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oP(M.) 1 { N+ M expl— BLJ(M - 1)/N + H]}

a 7| 2 2cosh{BJ(M—1)/N+H]}
N-M+2 exp{BlJ(M-1)/N+H]}

2 2 cosh{B[J(M - 1)/N+H]}

where N is the number of spins and M takes discrete values
-N,-N+2,...,N (see Appendix A). For finite N, we can
solve the simultaneous equations for P(-N,r),P(-N
+2,1),...,P(N,t), as well as perform a Monte Carlo simula-
tion of the model.

III. ASYMPTOTIC SIZE-DEPENDENCE OF THE
RELAXATION TIME NEAR THE SPINODAL POINT

Next, we study the scaling properties of the relaxation
time near the spinodal point. For large N, we set m=M/N
and regard m as a continuous variable. Expanding the RHS
of Eq. (7) in a series in e=1/N, we obtain the following
Fokker-Planck equation:

aP ] &
ﬁ(t’”) = L ) P(n) + 5 5a(m)P(m) + O, ()
where
~ BIm
g1(m)=m —tanh[B(Jm + H)] + g—coshz[ﬁ(./m T
g,(m)=1—m tanh[ B(Jm + H)]. (9)

The last term of g,(m) gives the correction to the spinodal
point due to the finite-size effect. Hereafter, we ignore this
term as it is very small. Near the spinodal point, we expand
gi(m) and g,(m) around the spinodal point. We set x=m
—mgp, and y=B(H-Hgp) =h—hgp, and then we have

g1(m) = - BLJ — (B + 2xy),

1
go(m) = ,B_J

(10)
where 7=|mgp|=\1-1/pJ.

Let us consider the time evolution of x, starting from x
=0. The distribution of x evolves according to Eq. (8) with
g1~-y/BJ and g,~ 1/BJ. When x approaches x~y'"?, the
correction term —7BJx> in g, becomes relevant, but other
correction terms in g;, such as —2xxy, are still irrelevant.
Therefore, in order to determine the relaxation time, we can
use the approximation that g, =-y/BJ-nBJx* in the early
stage of the phase change. Then, the Fokker-Planck equation
takes the form

P(M

PM-2)+
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N-M exp{BlJ(M+1)/N+H]}
© 2 2cosh{B[J(M+1)/N+H]}

N+M +2 exp{- B[J(M + 1)/N + H]}
2 2 cosh{B[J(M + 1)/N + H]}

P(M)

P(M + 2)}, (7)

(%P(x,t) = [— %(,BLJ + 77,8]x2> + Bijg]P(x,t).
(11)
Now, we introduce the scaled parameters,
E=ay"'2, (12)
and
A =Ny, (13)

Then, for nonzero y, the Fokker-Planck equation is given by

i _ 13 _ 1/2i<+L 2)
atP(ét)—s { |Al py: —BJ+77BJ§

1 7
+ — (P(&1), 14
,BJIAI%Z} (&1) (14)
where A >0 for the upper sign, and A <O for the lower sign.
Because Eq. (14) depends only on A except for the factor
&', the relaxation time is expected to be given in the form

7~ N'3F(A) = NV3F(N?(h - hgp)). (15)

This is the finite-size scaling for the relaxation time near the
spinodal point. This form has been pointed out by Paul et al.
[6]. Here, we re-examine the form of the scaling function by
studying the asymptotic forms of the relaxation time.

In the above argument leading to the scaling relation, it is
necessary to pay attention to the range of the parameters, in
which the application of the above estimate can be verified.
We may regard the relaxation time as a time when the mag-
netization x becomes O(1). Then, & becomes O(|y|~"/?). This
implies that we may need to include an additional y depen-
dence in the relaxation time. Thus, we cannot immediately
conclude that the finite-size scaling has the simple form of
Eq. (15). Indeed, such consideration is essential for the re-
laxation after rapid quenching at zero field and has been
studied as a scaling theory of the relaxation at unstable point
[10]. In fact, the relaxation time is proportional to In N in the
relaxation at the unstable point, which is unexpected from
the form of the Fokker-Planck equation. This problem is in-
vestigated in Appendix B, where we show that the additional
contribution does not need to be taken into account in the
relaxation at the spinodal point, and the finite-size scaling is
correctly given by Eq. (15). In the following, we investigate
asymptotic forms of the relaxation time for the cases y <O,
y=0, and y>0.

In order to consider more general cases later (Sec. V), we
rewrite the Fokker-Planck equation with general coefficients
a, v, and 9,
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FIG. 1. The scaled potential U(£) in Eq. (19). A: the metastable
state. B: a point in the basin of attraction of the stable state. C: the
unstable state.

O%P(é,t) = 8”3{— |A|”2i(i a+ yE) + iﬁ}P(é,t).

23 A 9¢
(16)
The coefficients «, 7y, and & are defined as follows:
g1 =—-ay-yn’,
g = 0. (17)

In the case of the relaxation from the mean-field spinodal
point, a=38=1/(BJ), y=nBJ.

A. Metastable region: The y <0 case

This case corresponds to the relaxation from the meta-
stable state to the equilibrium state. We can estimate the
relaxation time by Kramers’ method of escape over a poten-
tial barrier [11]. We rewrite Eq. (16) in the following form
(A<0):

P _ 81/3i<ie—Al3/2U@/aielA3”(/@)/5,3)’ (18)
ot IE\|A] J

where

U(d) = aé- y&/3 (19)

is the scaled potential. We consider the escape of probability
from the valley to the outside (A — B) as depicted in Fig. 1
[11]. There, the probability current o is given by

6
o=—gB-2

enProers L aPuersp(a)
Al 9

We consider the stationary current (o=const.) and integrate
it between the two points A and B.

32
nd [AP2U@ropy

o=—¢& .
A B

Al f BINPU@I54¢
A

21

If the number of spins N is very large, we can use the
steepest-descent method, and we have
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©

B
f NPPU@ e~ | JWBIAPPUCH128BIAPPU"C)E - 07 g
A —0

Vo (2)

This approximation is valid for a sufficiently large |A|. We
consider the early stage of the relaxation and assume the
relaxation has not occurred yet, namely, P(B)~0. Then, we
obtain the estimate

_ 6UII C ;
o= P(A)sm /TAFW)e_Ap/Z[U(c)—U(A)]/S' (23)

The probability distribution near the point A is approxi-
mately given by

|A|3/2 1 , )
exp| ~ U(A)+EU (A)(E-A)

P(¢é) =ny

El

z
(24)

where Z is a partition function,

. apef :
Z:j dé exp| - 5 U(A)+EU"(A)(§—A)

26

— o NPPuays [ 219
|A|3/2U//(A)

(25)

Namely, the probability distribution near the point A is given
by the equilibrium distribution of the approximate harmonic
potential. The variable n, represents the total probability
near the point A. This quantity evolves as

d 1

TRy =—O0=— "Ny, 26

i T (26)
where 7 is the relaxation time that we want to know. As the
probability at the point A is given by

|A|3/2
exp[_ TU(A)] AFPU"(4)
PO=m =N T

(27)

[see Eq. (24)], combining Egs. (23), (26), and (27), we ob-
tain

T~ N1/327T| U//(A)U//(C)|—1/2|A|—l/2
|A|3/2
1)

Xexp [U(C)- U(A)]}. (28)
This is the result of the well-known Kramers’ formula for the
escape rate, and it agrees with the finite-size scaling Eq. (15).

The potential U(€) is U(§)=aé-y£/3, and the two
points A and C are given by the condition dU/dé=0. There-
fore,
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U(e) - Ua) = 22 \/E
3 Vy
U"(C) = - 2\ay. (29)

Hence, the relaxation time for sufficiently large |A| is

7~ N3 ——ex \/7A3/2 30
2\’m P{ | | (30)

In the case of Eq. (10), a=56=1/(BJ), y=7BJ, and we
have

4
NPTy AP2 Y 31
T 2\/77|A| Xp 3[[),] 1/2| | ( )

Here, it should be noted that from Eq. (2) the following
relation holds:

3877 A= BAF = BLF(C) - FA)].
Therefore, the relaxation time obtained above is roughly 7
~ eBAF which is the well-known Arrhenius formula. Another
derivation of Eq. (30) uses the WKB approximation as dis-
cussed by Tomita et al. [12]. We can derive the same result
(see Appendix C).

In the infinite long-range model, microscopic fluctuations
do not grow to become macroscopic because the long-range
interaction suppresses clustering and nucleation. It should be
noted that, in the limit of N— o, the system remains at the
metastable or marginally stable point, and the relaxation time
from that point becomes infinite. In contrast, in systems with
short-range interactions, the nucleation process causes the
system to relax to the equilibrium state in a finite relaxation
time. Thus, the divergence of the relaxation time does not
take place, and so far the divergence of the relaxation time
has not been considered seriously. However, as has been
pointed out [3], effective long-range interactions appear in
systems in which elastic deformation mediates interactions
among the spins. In such systems, the long-range interaction
model is effectively realized, and we expect that the finite-
size scaling discussed here would be relevant.

B. At the spinodal point: The y=0 case

Next, we consider the relaxation just at the spinodal point,
y=0. Substituting y=0 in the Fokker-Planck Eq. (11), we
obtain

J d &

—P(x,0) = y—[x*P(x,0)] + e 6— P(x,1). 32

P (x,1) Yax[x (x,0)]+¢€ P (x,1) (32)
Putting x=g'"z,

d d &
—P(z,) =P = y—22+ 6— [ P(z,0). 33
P (z.t)=¢ { YLt (z.0) (33)

By using the scaled variable s=t¢'?, we can eliminate the
e-dependence. Thus, as pointed out by Kubo et al. [9], the

relaxation time behaves as
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T g B=N", (34)

The relaxation time diverges in the limit of N— o just at the
spinodal point. In the limit of N— o, the system remains at
the unstable point, and the relaxation time becomes infinite.
This divergence is again due to the long-range interaction.

C. Unstable region: The y >0 case

Finally, we consider the case y>0. In this case, even if
N=o= (£=0), the relaxation takes place. Namely, the relax-
ation time saturates at a finite value at large N. Therefore, we
consider only the limit N— . The Fokker-Planck Eq. (14)

then becomes
JP J
—=—y"2—(a+ y&)P. 35
o=y e ) (35)

Therefore, the relaxation time is expected to scale as
T~y = (h=hsp) ™. (36)

In the limit of N— oo, there is no diffusion term, so we can
derive the time evolution of the scaled magnetization &(r)
directly. Namely, putting P(&,1)= 8 &-€&(r)], we obtain

&) =y (a+ yé(1)?). (37)
The solution of Eq. (37) is given by
&0 = \/%tanm%r) (38)

for V‘Wt< /2. At a time Vayyr=m/2, the above expres-
sion indicates that &) would diverge. However, the higher
order terms in the original Fokker-Planck equation (8) pre-
vent this divergence of the magnetization. Thus, the relax-
ation time is estimated as

T
7~ Tlay) 2. (39)

In the scaling form,
7~ N2 (ayA) (40)

This result is consistent with that obtained by Binder [1],
who showed that for 47> hgp, the relaxation time behaves as
7~ (h—hgp)™"2.

IV. NUMERICAL RESULTS

We have seen that the relaxation time 7 obeys the finite-
size scaling form (15)

(y,N) = N'"3f(N*3y),

and we have derived the asymptotic forms of the relaxation
time, i.e., in the case of Eq. (10),

77(7]|A|)_1/2exp{ |A|3/2} for —-A>1
JA) ~

g(ﬂj\)‘”2 for A>1.

(41)
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FIG. 2. (Color online) Comparison of the asymptotic form of the
relaxation time with numerical results. Data are plotted in the coor-
dinates [A,In(N~"37)]. The solid lines denote the asymptotic form
(41). The symbols are interpreted as follows: closed circles, upward
triangles, downward triangles, and closed squares denote the data
obtained by the master equation for N=1000, 2000, 4000, and
10 000, respectively. Open circles and squares denote the data ob-
tained by the Monte Carlo method for N=1000 and 10 000,
respectively.

In this section, we check these results by numerical stud-
ies. We solved the original master Eq. (7) numerically, and
also performed kinetic MC simulations (see Appendix D).
The parameters are set as S=1 and J=2. The relaxation time
is defined as the time at which the magnetization of a sample
reaches a certain value m,. Here, we adopt my=0. In the
Monte Carlo simulations, the relaxation time is measured
directly in each simulation. On the other hand, in the master
equation we have to define it from the change in the prob-
ability distribution P(M,r). Namely, we obtain the average
of the relaxation time with the formula,

T=- f dt >, P(M,1)t, (42)
0 M<0
and its standard deviation as
o,=- f dt >, P(M,0f* - 7. (43)
0 M<0

We plot data for various parameters in a scaling plot in Fig.
2, namely, in the coordinates [A=N*3y,In(N~"37)]. We con-
firmed that both methods give the same results, as they
should. In the Monte Carlo simulations, each data point is an
average over 1000 samples, and the error bars are smaller
than the symbol size in the figure. All the data collapse well
onto a scaling function, which indicates that the finite-size
scaling works well. For large A, data points for different N
deviate slightly from the scaling function. This fact is ex-
plained as follows: the condition for the finite-size scaling to
hold is that the system size N is sufficiently large and the
magnetic field is sufficiently close to the spinodal point. This
implies N> 1 and |y| < 1. However, an even stronger condi-
tion is required for the finite-size scaling. As we assumed x
=m—-mgp<<1 to derive the Fokker Planck equation and x was
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&8 ‘Q.QD i
8

0.8 : ~ 1
o/t | Dq 1
0.6/ '% ]
i < ]

s
0.4t ® =[3<
N

FIG. 3. (Color online) Ratio of the standard deviation of the
lifetime, o, to the lifetime, 7, as obtained from the master equation
and MC simulations. The data are shown as a scaling plot vs the
scaling variable A. The symbols have the same interpretations as in
Fig. 2.

rescaled as x=¢£ly|"?, not only |y|<<1 but also |y|"><1 was
necessary. Therefore,

|A|1/2 < N1/3

is required for the finite-size scaling.

Now, we compare the numerical results of the master
equation with the asymptotic form for the relaxation time 7,
Eq. (41). In Fig. 2, we compare numerical results and the
asymptotic forms, Eq. (41). Here, we find that the asymptotic
formulas describe the scaling form well in the large-A re-
gion, where the data points approach the asymptotic forms
when the size increases. Here, we find that the scaling prop-
erty (15) holds, and the asymptotic forms also hold asymp-
totically.

As the scaling variable A goes from large positive to large
negative values, the lifetime distribution goes from a narrow
peak in the unstable region to an exponential distribution
deep in the metastable region. This is illustrated in Fig. 3 by
the ratio of the standard deviation of the lifetime, o, to the
lifetime, 7, as obtained from the Master equation and also by
MC simulations. These results also show good scaling col-
lapse, although the convergence to the asymptotic limit is
somewhat slower for o, than for 7, as one would expect for
a quantity involving a second moment of the lifetime distri-
bution.

V. THRESHOLD PHENOMENA UNDER
EXTERNAL PUMPING

In this section we study switching in spin-crossover (SC)
materials under photoirradiation, which is representative of a
wide range of switching processes under external driving
forces. The pumping effect is described by the following
process in the master equation. The pumping operation
causes a down spin (LS) to flip to the up state (HS) with a
transition rate a per unit time. Thus, the total transition rate
(6) from down to up is now given by
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1 e PEs

w- —>+)=——F——
( ) To e Pl 4 o PE-

+a, (44)
where E. denote the energies with the spin + and —, respec-
tively. On the other hand, the transition rate from up to down
remains unchanged and is given by

1 e PE-

wHt - =—)=——————.
( ) Toe_'BE++e_BE-

(45)
These transition rates do not satisfy detailed balance, but
they produce a stationary state. Thus, as far as we consider
the system at a given temperature, we have a well-defined
relaxation process to the stationary state. Here, we study the
parameter dependence of the relaxation time. To express the
pumping, we add the term

—aN_zMP(M) +aN—_ M-2)

P(M-2) (46)

in the master equation. In the large N limit, this modification
gives the additional terms in the Fokker-Planck equation

- ai{(l —m)P(m,1)} + asiz{(l —m)P(m,1)}. (47)
om om

Thus, g,(m) and g,(m) in Eq. (9) are now replaced by
gi(m)=m—tanh[ B(Jm + H)] — a(1 — m),

gr(m)=1-m tanh[ B(Jm + H)] + a(1l —m). (48)

The point corresponding to the spinodal point is given by
d
gim)=0 and —g,(m)=0, (49)
om

which are given by

tanh =%, Hi L (50)
anh z = i -a,
Z BJZ I a.) —a.
and
J
cosh® z = A , (51)
1+a,

(&

where z=B(Jmgp+H). For the SC material, H consists of the
following two ingredients: the crystal field which gives the
energy difference between HS and LS states, and a time-
dependent field which represents the different degeneracies
of the HS and LS states [13].

Expanding the variable near the spinodal point: x=m
—mgp and y=a—a,, we have

g1 =-ay-y, (52)
where
1 1+
a= (1—\/1——%>, (53)
1 +a. BJ
and
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[ 1+a,
y=BJ(1+a)\/1- T (54)

1 2a, ( 1+ac)
G=—+ 1+ 4/1 - —=
BJ 1+a, BJ
As g; and g, have the same forms as Eq. (17), the same

analysis as in the previous section remains valid, and the
finite-size scaling is again given in the form

r=N"3f(N"*(a-a,)). (56)

and

0. (55)

The asymptotic form is also given by Egs. (30) and (40).

VI. SUMMARY AND DISCUSSION

Mean-field type critical behavior takes place in systems
with effective long-range interactions, as has been pointed
out for spin-crossover type materials [3]. We expect that the
dynamical critical properties such as the spinodal phenomena
are realized in those systems. In models with short-range
interactions, there exists a mode of relaxation from the meta-
stable state through nucleation of localized clusters. Thus,
the relaxation time around the spinodal point changes
smoothly, and the critical properties at the spinodal point in
the mean-field theory are smeared out. However, in long-
range interaction models, the relaxation time diverges as de-
scribed by the mean-field theory. It is, therefore, necessary to
study the finite-size scaling properties of the critical behav-
ior. Thus, we here studied the size-dependence of the relax-
ation time near the spinodal point in the Husimi-Temperley
model. Starting from the master equation for the probability
density of the total magnetization under the Glauber dynam-
ics, the Fokker-Planck equation for large N was obtained as
in previous work [6]. Using this Fokker-Planck equation, we
investigated the relaxation processes near the spinodal point.
As a result, we obtained asymptotic forms and a finite-size
scaling function for the relaxation time, which cover both
sides of the spinodal point, i.e., the metastable side and the
unstable side.

We further extended the analysis to systems that are
pumped by an external field. The critical properties obtained
in the present work should apply widely to threshold phe-
nomena in long-range interacting models, such as the thresh-
old phenomena found in the excitation process by photoirra-
diation from the low-temperature phase to a photoexcited
high-temperature phase in spin-crossover materials [5].

In the ongoing development of nanosize fabrication,
switching processes in nanosize systems are an important
issue, and the size-dependence of relaxation times of the
switching processes must be precisely understood. We hope
the scaling properties presented here will help to analyze
such processes in experimental systems.
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APPENDIX A: THE DERIVATION
OF THE MASTER EQUATION

In this appendix, we derive the master Eq. (7) for Hamil-
tonian (1) and the transition rate (6). The probability of the
state {o},0,,...,0y} at a time ¢, which is denoted by
P(oy,...,0y:1), evolves according to

N

Jd

EP(OH, o) == 2 wylo;— = a)P(0y, ... ,oN;1)
i=1
N

+2 wM—Zo'l.(_ o, — o)P(...,
i=1

— 0; ,t), (Al)
where
( )= 1 exp{= Bo[J(M - o)/N + H]}
CMRT T o0 ) 2 COSh{B[J(M— (TJ/N'{'H]} ’
(A2)

and M is the total magnetization, i.e., M =2,;0;. We consider
the time evolution of the probability of M

PM,= X

01,0 - ON=

N
5(2 O-i’M>P(O-1’ ’O-N;t)7
*1

i=1

where 8(a,b) denotes the Kronecker delta. After some cal-
culation from Eq. (A1), the equation of motion for P(M 1) is
obtained in the form

d N+M
EP(MJ) =- wy(+ 1 —=1)P(M,1)

N-M

- = ayl= 1=+ DP(M.1)
N—-(M-2

+%wM_2(— 1—+ I)P(M—Q,,t)
N+ (M+2)

ey 1= = DP(M +2.0),

(A3)

The meaning of this equation is clear. The first and second
terms correspond to the transition from the magnetization M
to M—2 and M+2, respectively. The third and fourth terms
represent the transitions from M -2 to M and from M+2 to
M, respectively. This equation gives Eq. (7).
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APPENDIX B: CUTOFF INDEPENDENCE
OF THE FOKKER-PLANCK EQUATION (16)

In Sec. II, we remarked on the possibility of an additional
y-dependence in the relaxation time. Namely, if we regard
the relaxation time as the time when the magnetization x
becomes O(1), this corresponds to the time when & becomes
O(]y[""?), and this implies that we cannot conclude the
finite-size scaling of the relaxation time, Eq. (15), from the
form of the Fokker-Planck equation (16). In other words,
although the Fokker-Planck equation (16) seems to depend
only on A, we must restrict the range of the variable &
<O(y™"?) and this cutoff of & can induce an additional
y-dependence in the relaxation time. We note that the relax-
ation time indeed depends on the cutoff in other situations.
One example is the relaxation from the mean-field unstable
fixed point. In this case, the Fokker-Planck equation is given
by

d d &
EP(x,t) =— axP(x,t) + gﬁP(x,t), (B1)

(we set some coefficients equal to unity). We can transform

this equation to the scaling form similarly. If we set x
12

=8 é?

J ] &+
This equation is apparently independent of e. Is the relax-
ation time independent of the system size N=1/&? The an-
swer is no. It is known that the relaxation time in this case is
7~1In N [10]. We show that this N-dependence stems from
the finite cutoff. We can solve Eq. (B2) for the initial condi-
tion P(£,0)=4(¢),

P&n)=—— exp{— £ 2] (B3)
V2mo(t) 20(1)
where o(t) is given by
a(f) =V —1~¢ (B4)

It takes infinite time for & to reach infinity. As x=g!2¢
x*(t) ~ ea(t)>=ee?. We consider the relaxation time as the
time when x2(¢) reaches 1, i.e., x*(7) ~ 1, the relaxation time
is proportional to In N,

7~InN. (B5)

In this way, we found out that the cut-off dependence could
actually affect the relaxation time, but this cutoff played no
role in the case of the relaxation near the spinodal point.
Hence, here we show that the relaxation time does not
depend on the cutoff of & if this cutoff is very large. If we
denote the average of &' over P(¢§) by &, the time evolution

of & is given by

&) = "P|A|[= a+ y@(0] = e A [+ a+ vE0)]].
(B6)

If &(#y) is larger than Va/y=w, it can be shown from Egq.
(B6) that
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_ 1+A
E0=+ tAig v, (B7)
where A(r) is given by
Al = f(t())—_vexp[%m/\mvy(t —1)]. (B8)
&) +v

The average of the scaled magnetization £(f) reaches infinity
when A(r)=1, namely,

1 g(to) + v
t_t0=2 ENIE In| = .
e *[A["vy &t)) —v
Because 7 is finite, it takes only a finite time for &(¢) to reach

infinity. Therefore, there is no cut-off dependence on the re-
laxation time in the Fokker-Planck equation (16).

(B9)

APPENDIX C: DERIVATION OF EQ. (30)
BY THE WKB APPROXIMATION

In the body of this paper, we estimated the relaxation time
for A<0 and |A|>1 according to Kramers’ argument. Here,
we give another derivation by using the WKB approxima-
tion. The following derivation is essentially the same as that
of Tomita, et al. [12]. The Fokker-Planck Eq. (18) can be
transformed into the “Schrodinger equation”

90 _ 150 70

a ¢ |A| 98 1)

- e"PV(90(9 = e"*HO(§)

by substituting

1
P= exp(— 2—5|A|3/2U(§)> 0(§).

The scaled potential U(&) is given by Eq. (19), and the
Schrédinger potential V(§) is

1 1
V(9 = APU (97 - SIA]?U(9). (C2)
46 2
If the eigenvalues of H are \; (i=0,1,2,...) and the eigen-
functions are ¢;, we can expand Q(¢,7) as

060 =3 cih(ge™ ™. (C3)

The lowest eigenvalue is Ay=0, and the corresponding eigen-
function is

() = e 0, (c4)
which corresponds to the equilibrium state. Z is the normal-
ization factor for [ q’)ﬁd§= 1. The second lowest eigenfunction
¢, will represent the metastable mode, and the correspond-
ing eigenvalue will be connected with the inverse of the life-

time of the metastable state, £'/3\;~1/7.
From the Schrodinger equation (C1),

1 U
0==5—di+ V. (3)
m

PHYSICAL REVIEW E 81, 011135 (2010)

Vi)

metastable
A

equilibrium metastable equilibrium

FIG. 4. Rough sketches of the scaled potential U() and the

corresponding Schrédinger potential V().

1
)\1¢1=—E¢'{+V¢1~ (C6)

The mass m is m=|A|/(26). If we multiply Eq. (C5) by ¢,
and Eq. (C6) by ¢, and subtract the two equations, we obtain

1
7\|¢0¢1 = %(d’éd’l - ¢;¢0)'- (C7)

Integrating this equation from — to the point C (see Fig. 4),
we obtain

L ___HO8(O)

1= C (CS)
2mf Poidé

because ¢;(C)=0. Here, we consider the metastable wave

function ¢, which corresponds to the localized canonical

distribution at the valley of the potential. Hence, we assume
for é=C

¢o=ued,, for ¢=C, (C9)
where u is a constant given by
¢ 2md 3
W= f_m ¢0(§)2d§ ~ 71 |A|3/2U"(A) e—\A\ U(A)/zS‘
(C10)

Besides we assume that the first excited eigenfunction is also
proportional to ¢, in the range ¢=<C,

¢1 = v¢ms for

because ¢, is considered to represent the metastable mode.
Under these assumptions, we get

£<C, (C11)

c c
f b dé=uv f Pmsdé = uv. (C12)
Using the WKB approximation, it is obtained that

#/(C) =~ \2mV(C) b, (C) = Zv’sz(C)%(C). (C13)

Substituting Eqs. (C12) and (C13) into Eq. (C8),
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1 V(C)
1=\ 5 %(C). (C14)
u 2m
After some calculation, we obtain
1 A
M=y u|U”(A)U"(C)|e-ﬁAF (C15)
T

where the free energy barrier BAF is BAF=|A]*’[U(C)
—U(A)]/ 6. Therefore, the lifetime of the metastable state 7,

which is equivalent with the relaxation time, is
T~ 2N1/3 \'/’7_T| U”(A) U"(C)|_I/Z|A|_l/2€’8AF. (C16)

Comparing with the relaxation time obtained by Kramers’
argument, Eq. (28), they agree with each other except for the
minor difference in the constant prefactor.

APPENDIX D: MONTE CARLO SIMULATION

We also obtained data by performing kinetic Monte Carlo
simulations to confirm the data obtained by solving the mas-
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ter equation. In the Monte Carlo simulations, each data point
is an average over 1000 samples, and the error bars are
smaller than the symbol size in Fig. 2.

The algorithm of the Monte Carlo simulations is as fol-
lows. We choose a spin at a site i randomly, and update the
spin with the probability corresponding to the Glauber model
given by Eq. (6)

B exp{- Bo[J(M - d;)/N + H]} .
"~ 2cosh{BlJ(M - o)IN+H]}

wylo;— -0y

where o; is the spin state of the i-th spin (o;= = 1). In prin-
ciple, a small time increment Az<<1 is necessary to repro-
duce the result of the master equation given as a differential
equation. However, we found almost the same result with the
different time division, Ar=0.01 and 1 for the quantities plot-
ted in Fig. 2. Hence, we obtained the data with A¢=1. During
one Monte Carlo step we perform single spin flips N times.
Therefore, the time ¢ is related to the Monte Carlo step s by
t=s because Ar=1. The initial condition of each Monte Carlo
simulation is set to the spinodal magnetization.
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